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Abstract

Geological objects that deform di�erently from the rock matrix, such as pebbles or other clasts, are unlikely to have been

originally circular or elliptical in section, and must therefore be expected to deform heterogeneously and change shape
irregularly. We investigate this process with ®nite element models of pure shear deformation of square objects in three
orientations, square, skew and diagonal, in a matrix with di�erent viscosity. Modelling shows that `squares' deform irregularly,
with competent objects becoming barrel shaped and `®sh mouthed' (cf. boudins), whereas incompetent objects become bone

shaped or elongate lobes. The object aspect ratios (RO) are less di�erent from the bulk strain ratio (RS) than for equivalent
circular objects. In contrast, diagonal squares deform almost homogeneously into `rhombs', with aspect ratios closer to those for
circles. Asymmetrically oriented `skew squares' behave intermediately, developing skew ¯ag and hooked shapes according to

competence contrasts, that might be misdiagnosed as shear criteria.
All these square objects (and circles in theory), show almost linear strain paths of object versus bulk (Rÿ 1), with slope

related to viscosity ratio, object shape and orientation. Linear relationships are also found for concavity/convexity shape factors

for `squares'. The results have implications for strain analysis and competence contrasts in rocks. # 1999 Elsevier Science Ltd.
All rights reserved.

1. Introduction

To quantify the deformation in rocks, structural ge-
ologists need geological markers on which to perform
strain analysis (Ramsay and Huber, 1983). Ideal strain
markers might be those that represent the total strain
of the rock on a certain scale, and which can also pro-
vide a direct strain measurement. `Reduction' spots,
ooliths and volcanic lapilli might all be considered to
be in this category: objects of supposedly initial spheri-
cal shape that deform to ellipsoids presumed to be
representative of the strain ellipsoid for the rock. Such
strain markers, however, are relatively rare; they do
not conveniently occur all throughout the geological
succession, or over a map area. So, in practice, geo-

logical strain analysis is likely to be based on less per-

fect strain markers, such as deformed pebbles or other

kinds of clast. Because of their relatively common

occurrence in the stratigraphic succession, deformed

conglomerates have historically provided one of the

most important databases for strain analysis (Flinn,

1956; Hossack, 1968; see Ramsay and Huber, 1983,

pp. 297±300 for source literature).

There are two broad approaches to strain studies of

deformed conglomerates and similar clast±matrix sys-

tems. Both, however, make the assumption that the

pebbles or clasts can be considered initially to have

been spherical or ellipsoidal (thus, in two-dimensional

studies, circular or elliptical). The ®rst and most com-

mon approach is to assume a homogeneous deformation

of the pebbles and matrix, so that the statistical infor-

mation on pebble axial ratios and orientations can

yield a measurement of strain, an example being Rf ±f
analyses of conglomerates (see Lisle, 1985; and refer-
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ences therein). The second approach is to utilise the
competence contrasts between pebbles and their sur-
rounding matrix, and consider these rocks as object±
matrix systems: the concern of this paper.

1.1. Object±matrix systems

It has been shown from two-dimensional theory
(Eshelby, 1957; Gay, 1968a; Bilby et al., 1975), that
isolated elliptical markers in a matrix of di�erent vis-
cosity will deform homogeneously into ellipses, but
with strain ratios di�erent from the bulk strain ratio,
according to the viscosity contrast. For initially circu-
lar objects in pure shear, the theoretical results in
Bilby et al. (1975) can be given explicitly, as

ln RS � ln RO � f�mÿ 1��RO ÿ 1�=�RO � 1�g, �1�

where RS is the bulk strain axial ratio, RO is the in-
clusion or object strain ratio, and m is the viscosity
ratio of object to matrix.

The strain relationship given in Eq. (1), can be illus-
trated graphically as a set of curves of RO versus RS,
for di�erent m values, usually on a log±log scale (e.g.
Bilby et al., 1975; also Gay, 1976; Treagus et al., 1996)
(see later Fig. 11d). While the theoretical approaches
of Gay (1968a) and Bilby et al. (1975) are subtly di�er-
ent, the results for geologically reasonable values of
bulk strain can be shown to be virtually the same
(Gay, 1976). The m-curves drawn from Eq. (1) for cir-
cular objects are slightly non-linear for bulk strain
ratios up to 10 or 20 (linearity would imply a steady
incremental change). Competent objects (m > 1) have
very slightly increasing ln RO/ln RS; incompetent
objects (m < 1) more measurably show a decreasing
ln RO/ln RS with increasing RS. These trends are more
clearly seen in Bilby et al. (1975, ®g. 2) as curves that
become subparallel at high bulk strain, which mean
that with increasing bulk and object strain, elliptical
objects deform by increments that increasingly
approach the bulk strain increments. These results will
be returned to, later in the paper.

The theoretical analyses of Eshelby (1957) and Bilby
et al. (1975) treated object±matrix systems as two-
dimensional, by considering the objects as circular or
elliptical cylinders in three dimensions; but the latter
paper also considered deformation of prolate and
oblate spheroids. Freeman (1987) developed the theory
to consider the e�ects of triaxial strain on spherical
and ellipsoidal objects, and their implications for geo-
logical strain analysis. Importantly, he demonstrated
that competent spherical objects would deform to
more prolate shapes than the bulk strain ellipsoid,
more so at higher m. Incompetent objects were not
considered, but it might be reasonable to suppose
these showed reciprocal e�ects of more oblate strain.

Gay (1968a) and Bilby and Kolbuszewski (1977) con-
sidered the e�ects of both pure and simple shear ¯ows,
and the latter leads into modelling of oscillatory ¯ow,
a subject that will not be reviewed further here. The
present paper will investigate two dimensions, only,
and will be concerned with pure shear (plane strain).

Finite element modelling of the deformation of cir-
cular objects in a contrasting matrix, by Shimamoto
(1975), con®rmed the theory. Although presented as
con®rmation of Gay's (1968a) equation, Shimamoto's
results con®rm just as well the contemporaneous
results of Bilby et al. (1975) (Eq. 1), since these are vir-
tually the same until excessively high strain. These nu-
merical models also demonstrate strain trajectory
patterns that arise in the matrix surrounding more
competent and less competent objects. The bowing of
extensional trajectories around sti�er objects is analo-
gous to patterns of cleavage wrapping round suppo-
sedly more competent geological objects (e.g. clasts),
commonly used by ®eld geologists to indicate compe-
tence contrasts (see, for example, Lisle, 1985, ®g. 5.1).

The theory reviewed above has been applied to
deformed conglomerates by Gay (1968b), Gay and
Fripp (1976), and Lisle et al. (1983). By comparing
strain measurements from single pebbles or statistically
for groups of like lithology, these analyses are able to
deduce viscosity contrasts among rock-types, which turn
out to be quite small numerical values (e.g. 2, and 9 at
maximum). These applications are all based on model-
ling pebbles as initially circular or elliptical in shape. In
Treagus et al. (1996), we questioned whether this should
be generally assumed for clast shapes. If geological clasts
such as pebbles in conglomerate are not approximately
ellipsoidal, how would their real shape a�ect their defor-
mation, and how might this be modelled?

1.2. Non-circular and non-elliptical objects in a matrix

In Treagus et al. (1996), we introduced this topic by
reviewing whether most grains, pebbles and other
clasts in rocks are su�ciently `round' to be viably
modelled as circular (or elliptical) in section. Evidence
suggests that even pebbles described as `round', might
be better approximated as super-ellipsoids with axial
symmetry (Lisle, 1988), and many types of geological
clasts are much more angular. The theory reviewed
above states that circular objects in a contrasting
matrix deform homogeneously into variably elongate
ellipses, according to the bulk strain and viscosity ratio
(Eq. 1). The converse, implicit in Eshelby (1957) and
Bilby et al. (1975), is that non-elliptical objects with
viscosity contrast will not deform homogeneously, and
therefore will not maintain a regular shape. We
demonstrated this in Treagus et al. (1996, ®g. 3), by
presenting ®nite-element models of square objects in a
matrix, in pure shear (50% shortening) oriented paral-
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lel or diagonal to the square. The models di�ered from
Selkman's (1983), who concentrated on deformation
and stress variations within and around sti� square
objects shortened only up to 8.33%. Our models had a
wide range of viscosity ratios, including incompetent
objects (m < 1).

The square competent objects (1 < m < 10) became
barrel-shaped (Treagus et al., 1996, ®g. 3a), and may
be likened to geological boudins (Ramberg, 1955;
Ghosh and Ramberg, 1976). These shapes were similar
to, but less extreme than, those produced in elastic±
plastic ®nite element models of boudinage by Lloyd
and Ferguson (1981). Our square incompetent objects
(m < 1) became bone shaped to smoothly elongate
lobes that virtually eradicated the initial shape. In con-
trast, our second set of models with diagonal square
objects (Treagus et al., 1996, ®g. 3b), produced much
less shape irregularity (even less than these drawings
suggested), and were all approximately rhombic. From
this preliminary modelling, we also speculated about
the deformation of square objects in other orien-
tations, other deformation histories, and shapes
between square and circular. This has developed into a
wider-reaching research project on numerical model-
ling of deformation of non-ellipsoidal objects with
competence contrast, and their geological signi®cance,
especially to the deformation of fragmental rocks. This
paper reports some of the new model results.

2. Finite element modelling

We use a two-dimensional ®nite element program for
slow (quasi-static) ¯ow of an incompressible ¯uid. The
®nite element code was developed (Hanson, 1990) to
model ice sheet deformation as an incompressible
power-law ¯uid. The code has been modi®ed and
applied to structural analysis of folding and thrusting
deformation in Newtonian and power-law systems by
Lan and Hudleston (1991, 1996, 1997; Hudleston and

Lan, 1994). It was used to model deformation of isolated
objects in a contrasting matrix by Treagus et al. (1996)
and in this paper, where both object and matrix are
assumed to be Newtonian ¯uids with constant viscosity
ratio.

These ®rst results (Treagus et al., 1996) came from
quarter models due to symmetry, but are only suitable
for modelling two orientations (square and diagonal-
square) (Fig. 1a). The new models presented here are
full models, suitable for objects with symmetry or
asymmetry in orientation and shape (Fig. 1b). The
object is constructed in the centre, and a variety of
shapes and orientations, square and rectangular, can
be created within the basic grid. This paper concen-
trates on squares, in three orientations (Fig. 1b).

The full square model has the square object aligned
with pure shear axes. It comprises 409 nodes and 416
elements, of which 236 are linear convex quadrilat-
erals, and 80 are transitional triangles (Fig. 2a). To
produce more accurate strain simulations, the object is
dissected into smaller quadrilateral elements, which are
de®ned to have a viscosity of type 2, compared to the
rest of the model that is type 1 (see dashed boundaries,
Fig. 2). This model has a linear object/matrix ratio of
1/4, and area ratio of 1/16, making it somewhat
further from the `theoretical object in a semi-in®nite
matrix', than the quarter model. Its design, however, is
considered to optimise two variables: (1) the need for
su�cient matrix to surround the object and accommo-
date the heterogeneous matrix strain; (2) the need to
make an object with su�cient nodes and elements to
model irregular shape development accurately. These
two factors are to some extent con¯icting, especially if
there are other practical considerations, such as overall
model size and the resulting running times. The ®nite
element grid is shown in Fig. 2, together with results
for viscosity ratios of 5 and 0.2 at 50% shortening.

A diagonal square full model was also created (Fig.
1b), called rhomb (comparable to the quarter rhomb).
However, the main purpose of the new design was to
deform objects that are oblique and asymmetric in pure
shear. The skew square model (Fig. 1b) is thus con-
structed, drawn within the central area across 2:1 tri-
angles, such that the sides are inclined at tanÿ1 � 2 and
0.5 (26.68 and 63.48) to the bulk pure shear. This skew
square model comprises 409 nodes and 440 elements.

The boundary conditions for pure shear are a `hori-
zontal' velocity component for the nodes along the
right vertical edge of the grid, and zero horizontal vel-
ocity for the nodes along the left vertical edge. Vertical
velocities at these nodes were free. The vertical and
horizontal velocities at the nodes along the bottom of
the model were set to zero and free, respectively. No
constraints were placed on the top boundary of the
models, and there are accordingly some de¯ections of
this boundary, apparent in Fig. 2. These are not found

Fig. 1. Previous and new designs of object±matrix ®nite element

models, scaled to match. (a) Quarter models, as used in Treagus et

al. (1996). (b) Full models used for this paper. `Square' is shown

with solid lines, `rhomb' with dotted lines, and `skew square' in dot±

dash lines. The outer square marks the whole model.
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to impose any signi®cant e�ect in the central regions,
su�cient to result in di�erences between upper and
lower object edge shapes. The velocities at all nodes
are calculated for the initial mesh and boundary con-
ditions. The time increment was used to update nodal
co-ordinates during pure shear deformation. Each time
increment is 0.025 units, with units of length and time
non-dimensionalised. The whole model in our study is
initially 3.2 units square, and so a 50% shortening
(bulk strain axial ratio, R � 4) is achieved in 64 time
increments (t ). The results for these three types of full
models are presented for four deformation stages: 25%

shortening (R � 1:78; t � 32), 50% (R � 4; t � 64),
67% (R � 9:2; t � 86) and 75% (R � 16; t � 96).

3. Model results

Finite element results are presented in Figs. 3±7, for
the three designs of full models of square objects in a
matrix, for selected viscosity ratios. In this paper, we
will concentrate on the shapes of the deformed objects,
and ways of quantifying their average strain. Each ®gure
compares full square, skew square and rhomb models,
progressing upwards from the initial square through the

Fig. 2. The new full model showing the ®nite element grid. (a) Initial con®guration, with dashed boundary showing the change from material

type 1 (matrix) to type 2 (object) for the `squares' series. (b) and (c) Models deformed by R � 4 (50% shortening), with viscosity ratio m (type2:

type1) � 5 and 0.2.
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four stages of deformation. The object co-ordinate pos-
itions are given with respect to the bottom and left
model edges (see also Figs. 1b and 2). Fig. 3 presents
models with no viscosity contrast (m � 1), equivalent to
homogeneous strain of passive square markers in three
orientations. Note that the decreases in linear dimen-
sions of object and matrix, in the shortening direction,
are in step; thus, the linear object/matrix ratio of 1/4 is
unchanged and non-directional throughout defor-
mation. This is not the case, where m 6� 1.

Figs. 4±7 demonstrate the di�erences in object strain
and orientation with viscosity ratio, m, for comparison
with Fig. 3. The characteristic features for competent
and incompetent objects will be discussed separately,
below. However, reasons for showing three models of
competent objects, but only one of incompetent, should
®rst be explained. Many more models (not shown), and
their measurements (shown in later ®gures), demon-

strate surprisingly small di�erences in results for m < 1,
over several orders of m-magnitude. In contrast, the
di�erences for competent objects are more distinctive
and signi®cant, and we argue later that these may have
geological applications. The following descriptions con-
cern qualitative features, and these will be addressed
quantitatively in subsequent sections.

3.1. Competent objects

Figs. 4±6 provide model results for m � 100, 10 and
5, for mutual comparison. For m � 100 (Fig. 4), up to
50% model shortening (middle row) the objects all
show very little deformation, behaving almost rigidly.
The skew squares show no rotation, con®rming what
would be expected for rigid equant objects in a defor-
mation with zero vorticity (Ghosh and Ramberg,
1976). However, during the last two stages of defor-

Fig. 3. Shapes of deformed square objects in a matrix, oriented as (a) `square', (b) `skew square' and (c) `rhomb'. Bottom rows show initial

shapes; successive rows upwards are the four model deformation stages, R � 1:78, 4, 9.18 and 16. m � 1, which is passive behaviour.
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mation, as the sti� object becomes increasingly close
to the model edge (Fig. 4a), the object is eventually
`forced' to deform, irregularly. At these amounts of de-
formation, the object/matrix spacing approaches the
object diameter value, which probably explains this
gradual change from the expected semi-rigid behaviour
for a high viscosity ratio, to deformation that might be
expected if objects impinged. This change is seen for
all three orientations, but the `squares' in (a) show sig-
ni®cant shape irregularity, whereas the `rhombs' in (c)
remain straight-sided while deformed, and the `skew
squares' in (b) fall in between.

For a viscosity ratio of 10 (Fig. 5), the object shape
changes and strain are more clearly noticeable. The
`square' models produce progressive barrel shapes
comparable to boudins, as described by Treagus et al.
(1996) (but note that all the earlier models were only
50% shortened, equivalent to our middle rows). At
high strain, these barrels show distinct `®sh mouth'

ends. Asymmetric barrel and ¯ag shapes are seen for
the `skew square' models (Fig. 5b), whereas the
`rhombs' show increasing strain but only very slight
shape irregularity (concave-sided). Comparison with
Fig. 3 shows that all the objects have smaller average
strain than passive objects that record the bulk strain.

The third example in the competent model series has
m � 5 (Fig. 6). This is illustrated because the prelimi-
nary results in Treagus et al. (1996) suggested this to
be the viscosity ratio that produces the maximum
shape irregularity for competent objects. Whether this
is substantiated by the new models will be examined
quantitatively, later. The shapes shown in Fig. 6 have
the same trends as those for m � 10, but are more
elongate and more irregular. The lengthening sides
become convex, and shortening sides strongly convex
inwards. However, the m � 5 `rhombs' again depart
only slightly from rhombic, so their concave sides are
hardly visible.

Fig. 4. As Fig. 3, but m � 100; highly competent objects.
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3.2. Incompetent objects

Fig. 7 presents the models for m � 0:1; the results
are very similar (as discussed above) for m � 0:2, 0.1
(shown), 0.01 and less. Comparison with Fig. 3 shows
that all the objects deform by more than the passive
objects, but the di�erences in elongation are not as
great as might be expected. Discussion about `incom-
petence' and its limiting e�ects, raised by Treagus et
al. (1996) from the examination of theory for circular
objects and the early models, is endorsed in Fig. 7 and
the fuller compilation in Fig. 8. Even where m40, the
object axial ratios do not become in®nitely large, but
can be expressed as small numerical factors of the bulk
strain ratio, as shown later.

The incompetent `squares' in Fig. 7(a) show shapes
progressing to spatula, bone and lobate ribbons, with
progressive deformation. Whereas the shortening edges
become excessively outward-bulging, the lengthening
edges remain almost straight, giving an eventual
smooth pseudoelliptical shape. The `skew squares' in

Fig. 7(b) become irregular hooked parallelograms or
`string bean' shaped, with only slightly convex shorten-
ing sides, and concave lengthening sides. The `rhombs'
(Fig. 7c) show even less shape irregularity, best seen
for the ®rst deformation increment where the sinuous
edges give the object a very slight lemon-shape. At
high deformation, the di�erences seen between the
three orientations are that the square has become an
elliptical-ended ribbon, whereas the skew and diagonal
squares remain highly angular.

3.3. Compilation and summary

The distinct features of the models in Figs. 3±7, plus
more models, are presented as composite summary
diagrams for the square (Fig. 8) and skew square (Fig.
9) objects, omitting the ®nal extreme deformation
stage, R � 16. The most extreme irregular shape
changes occur for the `squares' (Fig. 8), demonstrating
that when these objects have a viscosity contrast with
the surrounding matrix, they deform very inhomogen-

Fig. 5. As Fig. 3, but m � 10; competent objects.
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eously. The di�erent geometric changes for competent
and incompetent objects are clearly seen, even with
small viscosity contrasts such as 2 or 0.5: i.e. concave-
ended for competent objects, convex-ended, for incom-
petent. Ways of quantifying these e�ects will be given
in a later analytical section.

The deformation of `skew squares' produces com-
parable, but weaker, shape trends with viscosity ratio,
as compiled in Fig. 9. The hooked or claw-like
shapes for incompetent objects are not very sensitive
to the m value (compare 0.2 and 0.1). The asym-
metric barrel shapes of competent objects do not
show the extreme `®sh mouth' ends seen for the
`squares', but the lengthening sides are convex, while
the shortening sides are concave. Because these
shapes are less distinct and extreme than those seen
in Fig. 8, the interplay of elongation and irregularity
gives rise to less distinctive paths. For example, the

m � 5 object in 50% bulk shortening (Fig. 9b)
appears very similar to m � 10 at 67% bulk shorten-
ing (Fig. 9c). Perhaps the most notable features of
the results summarised in Fig. 9 are the distinct
asymmetric shapes that might mislead the eye into
viewing them as `shear criteria'. Yet all these object
shapes arose in pure shear orthogonal to the page,
and the `shear' arises jointly from the asymmetry of
these objects in pure shear and the heterogeneous
e�ects due to viscosity contrasts. The question of
strain orientation in these skew objects will be
addressed in a later section, where it will be shown
that the object strain is oblique to the bulk strain.

The `diagonal square' objects deform approximately
into rhombs, as already described. The shape vari-
ations are too slight to be useful viscosity indicators,
and so are not repeated in a compilation diagram,
here.

Fig. 6. As Fig. 3, but m � 5; moderately competent objects.
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4. Object strain analyses

4.1. Methods of analysis

The qualitative features of object strain and shape
have been described above, in conjunction with Figs.
3±9. How might these be quanti®ed, with the ultimate
aim of applying the results to geological strain objects?
The strains for the `rhombs' are virtually homo-
geneous, and so the easiest of all to de®ne and
measure. However, for the `squares' and `skew
squares', the shapes are irregular, demonstrating het-
erogeneous deformation. This is most evident in the
barrel and bone shapes (Fig. 8), for which many di�er-
ent average strain ellipses might be drawn, within or
enclosing the objects. Fig. 10(a and b) shows two cho-
sen methods of measuring a barrel object axial ratio.
The ®rst, de®ned as Rectangular R, is the rectangular
`frame strain' (a/b ) de®ned by the original corners

(Fig. 10a). The second, Inside R, is derived from
measuring the inner axial ratio, a '/b ' (Fig. 10b), equiv-
alent to the average strain ellipse that would arise
from a circle initially transcribed within the square
object. It records the minimum barrel strain ratio, and
does not take account of the heterogeneous defor-
mation localised at the object corners. These R
measurements will be compared.

We choose Rectangular R as the main measurement,
because it a�ords the best method of comparing the
object `frame strain' for all three model series:
`squares', `rhombs' and `skew squares' (Fig. 10a, c and
d). The original square corners are used, for each. For
`squares' and `rhombs', the ratios (a/b ) are determined
from model output, directly. For the skew models
(Fig. 10d), the average `frame strain' needs to be calcu-
lated. This has been done for a limited number of
models, using measurements of the deformed objects
and Mohr diagram constructions. A Mohr diagram

Fig. 7. As Fig. 3, but m � 0:1; incompetent objects.
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for stretch and rotation (De Paor, 1983; Means 1983;
see also Treagus 1995) is particularly convenient, as
the orientations and lengths of the frame sides (Fig.
10d, broken lines) provide two measures of stretch and
rotation. Because these lines were originally orthog-
onal, they plot as a diameter on the Mohr circle for
forward deformation, so identifying its principal axes
to give the object strain ratio, R. It should be noted,
however, that these R calculations are less accurate
than those derived directly for `squares' and `rhombs',
from object co-ordinate information. Calculations
have not been made for m > 10 because the strains are
considered too small to give an accurate result.

4.2. Object strain paths

Results for object strain versus bulk strain for the
three types of square models are presented in Fig.
11(a±c), for m � 0:1, 5, and 10 (also 100 in Fig. 11a).
This ®gure uses log±log R-graphs, as traditionally used
for representing theoretical values for circular objects
(see Introduction and Eq. 1). Accordingly, Fig. 11(d)
presents theoretical results for circular to elliptical
objects for comparable values of m (but m � 100 is
omitted, as the curve is virtually on the abscissa). For
competent square objects, in all three orientations
(Fig. 11a±c), the curves are slightly upwardly concave,
indicating increases in incremental object strain rate

with progressive strain. For incompetent objects, the
curves vary from almost linear for `squares', to a
slightly decreasing gradient for `rhombs' (a decreasing
incremental strain rate). These trends are comparable
to those noted earlier for circles (Fig. 11d).

If all these objects had deformed incrementally in
steady state, at a constant factor of bulk incremental
strain, expressed as:

eO � keB, �2�

where e are natural (logarithmic) object and bulk
strain rates, and k is a constant for the system (related
to m and to shape), this would give rise to a ®nite re-
lationship of the form:

ln RO � k ln RB; or RO � Rk
B: �3�

This would be seen in linear m-curves on log±log R
graphs (Fig. 11), which is not the case for any of the
square models. Note that the curves for circular
objects (Fig. 11d), based on Eq. (1) (Bilby et al., 1975)
are also non-linear for m < 1, but approximately linear
for m > 1 (competent objects), approaching the re-
lationship previously determined by Gay (1968a), a
form of Eq. (3).

Fig. 12 presents the strain results in Fig. 11, but now
on linearly scaled R axes, and an interesting result
emerges. For all three square orientations, plus circles in

Fig. 8. Compilation of shapes of `squares' for the ®rst three stages of deformation, taken from Figs. 3±7 and other models. Note the distinct

shapes and varieties of barrel and `®sh mouth' shapes, for m � 2, 5 and 10, and the decreasing object strain as m increases. Less variations of

shape occur for m < 1, but with progressive deformation, shapes progress from bones to smooth lobate-ended strips that conceal the original

square shape.
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theory, the m-curves are virtually linear; and this result
is con®rmed by other m values, not shown. The data are
plotted from (1, 1) on linear R scales, and so these results
can be summarised as the approximate relationship:

�RO ÿ 1� � q�RB ÿ 1� �4�

where q is a constant factor, for a particular viscosity
ratio and orientation of square (or circle).

Recall that circular inclusions deform homoge-
neously into ellipses, which is not the case for the
square objects shown in Fig. 12, especially (a).
Nevertheless, the strain paths for irregularly deforming
squares, and more regularly deforming rhombs and
circles, show similar near-linear trends in Fig. 12, fan-
ning out from least strain for higher m values to a
maximum strain for incompetent objects as m40.
These graphs show that for m � 10, q is about 1/3 for
a `square' (Rectangular R ), 1/12 for a `rhomb' and
1/22 for a `circle'. For m � 0:1, q is 1.4 for a `square',
1.7 for a `rhomb' and 2.4 for a `circle'. For the m � 0
circle, q is approximately 2.6, and this marks the `limit-
ing incompetent strain'.

We have no simple explanation for the approximate
linear relationship given in Eq. (4). It is possible that
the developing inequancy of object shape a�ects the
incremental deformation in a way that gives rise to
this simple ®nite result. The non-linear trends in the
log±log graphs (Fig. 11) are suggestive of a change
from active competence-contrast behaviour, to pro-
gressively more passive incremental behaviour with
increasing bulk deformation. The theoretical curves for
elliptical objects (Fig. 11d), shown to higher strains in
Bilby et al. (1975, ®g. 2), suggest that threshold RO

values of 5±10 might mark onset of `passive' beha-
viour. However, further modelling is needed to assess
whether any universal object axial ratio can be de®ned,
that applies to squares as well as circular objects, for
onset of passive incremental deformation.

4.3. E�ect of square orientation on strain

The results shown in Fig. 12 are compared in Fig.
13 directly, for three m values and models of `squares',
`skew squares', and `rhombs' (solid lines). Note, from

Fig. 9. Compilation of shapes of `skew squares' for the ®rst three

stages of deformation, taken from Figs. 3±7 and other models, for

comparison with Fig. 8. Note the distinctly skew barrel and ¯ag

shapes for competent objects, and hook-like or `string bean' shapes

of incompetent objects. All remain quite angular in shape.

Fig. 10. Methods of measuring object `average strain'. (a)

Rectangular axial ratio, R � a=b, used in subsequent analyses of

`squares'. (b) Inside axial ratio� a 0=b 0. (c) Rhomb axial ratio, a/b. (d)

Parallelogram de®ning outline of `skew square' for strain analysis by

Mohr diagram method.
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earlier, that the R values for `skew squares' are less
accurate than for the `square' and `rhomb' models; but
nevertheless, the virtually linear relationship of (R ÿ 1)
for object versus bulk strain is revealed in all cases.

The greatest competence contrasts (most di�erent
from bulk R ) are recorded by diagonal squares
(rhombs), the least di�erences for the squares parallel
to pure shearing (as de®ned by Rectangular R ), and
the skew squares are intermediate. For example, the
strain ratio given by the m � 10 square is roughly
comparable to m � 5 for a skew square, m � 3 for
rhombs, and nearer to 2 for circles. Of the three
square orientations, the rhombs behave nearest to cir-
cles, but record less competence contrast (Fig. 13).

These comparisons all concern the `frame strain'
de®ned earlier, where the irregular `squares' are

characterised by Rectangular R � a=b (Fig. 10a).
However, this is not the only way to measure the aver-
age object strain, as discussed earlier. Fig. 13 also
shows the Inside R measurements (Fig. 10b) for the
three m values, for comparison. For the competent
barrels, Inside R is always less than Rectangular R,
and vice versa for the incompetent objects. These
di�erences are addressed in more detail in the next sec-
tion, but we note here that Inside R produces virtually
linear curves on these (Rÿ 1) graphs (Fig. 13). The
values are only slightly di�erent from the R values for
rhombs, but systematically greater for competent and
incompetent models (by about 10% and 6%, respect-
ively). If Inside R were exactly the same as Rhomb R,
this would mean that the barrels and bones had
deformed in their inner (rhombic) half-area in just the
same way as the rhomb object constructed in this way
(see Fig. 1b). This is not quite the case, but su�ciently
close to con®rm that the deformation in the inner
rhombic portions of `squares' is more uniform than

Fig. 11. Graphs of object axial ratios (R Obj) versus bulk strain

ratio (R Bulk) on log axes. (a) Rectangular R for `squares' (de®ned

Fig. 10a). (b) Calculated R for `skew squares'. (c) R for `rhombs'

(Fig. 10c). (d) The equivalent graph for circles that deform uniformly

into ellipses (Eq. 1). For all graphs, the curves are drawn and num-

bered for viscosity ratios, m (ranging from 100 to 0.1), axis labels

(b)±(d) as (a), and the symbols in (a)±(c) indicate data points for FE

models at the four stages of bulk deformation; see Figs. 3±7 for

examples.

Fig. 12. As Fig. 11, but drawn on linear R axes, (b)±(d) axes as (a).

Note that the curves shown in Fig. 11 are all now approximately lin-

ear.
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the outer corner regions, which are pulled out or in, to
form the characteristic irregular shapes.

4.4. Sensitivity of object strain to viscosity ratio

The di�erent ways of measuring an average object
strain for the irregular `squares', introduced above, are
addressed in greater detail in Fig. 14 in terms of vis-
cosity ratios. Fig. 14 compares (a) Rectangular R with
(b) Inside R, documenting the variation of each with
m for the four stages of model deformation.
Rectangular R is always more than Inside R, for com-
petent objects (barrels), and vice versa for incompetent
objects. The lower-left diagram in Fig. 14 is especially
useful to illustrate the very small di�erences for incom-
petent objects, over several orders of m magnitude
(note plateau curves). In view of the similarity of the
strain ratios of `rhombs' to the Inside R for `squares',
noted above, the curves for the latter in Fig. 14(b)
may also be taken as approximate values and trends
for object strain versus viscosity ratio of `rhombs'.

The relationships of Rectangular R and Inside R for
`squares' can be quanti®ed as an R-ratio (Fig. 15), pro-
viding both a measure of object strain heterogeneity
and of shape irregularity. The two are interrelated, as
the barrel and lobate shapes arise because of these
objects' departure from homogeneous deformation.

The shape features of the models will be discussed in
more detail in the next section, but three main points
emerge for R-ratios versus m, in Fig. 15. (1) For com-
petent squares, the ratio broadly increases with pro-
gressive deformation, indicating growing
heterogeneous strain. (2) The maximum irregularity
and heterogeneous object strain in the competent
objects is clearly revealed to be in the region of m � 5,
for all four stages of deformation. (3) For incompetent
objects, the curves are less distinct, and relatively
insensitive to m.

4.5. Strain and rotation in skew models

Much of the previous analysis has concerned defor-
mation of square objects in `square' or `rhomb' orien-

Fig. 13. Comparisons of object versus bulk strain data for three

square orientations (solid lines) and circles in theory (dot±dash), for

m values of (a) 10, (b) 5 and (c) 0.1, and linear R axes. (b)±(c) axes

as (a). The square, rhomb and circle symbols indicate like-named

models and their FEM data points; triangles symbolise the `skew

squares'. The crossed squares with dotted curves record Inside R for

`squares' (see Fig. 10b), and show the closeness to rhomb R values.

Fig. 14. Variations of (a) Rectangular R (squares) and (b) Inside R

(crossed squares) for `squares', plotted against m values. The symbols

indicate model results, and the four curves represent the four succes-

sive stages of bulk deformation (R � 1:78, 4, 9.18, 16). Upper graphs

m > 1 (competent objects); lower graphs m < 1 (incompetent). The

solid diamonds superimposed on (b) show comparative R values for

`rhombs', for the fourth stage, for m � 0:1, 5, 10 and 20 (obscured),

indicating closeness of Inside R and Rhomb R.
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tation with respect to bulk pure shear, and their com-
parison. The determination of object strain in the asym-
metric `skew square' models (see Fig. 9) was made by
calculation rather than direct measurement. The object
R values, discussed earlier, were shown to fall between
the values for the squares and rhombs (Figs. 12 and 13).
But what are the orientations of the object strain axes?
It is obvious that the long and short axes of the object
strains (however measured) for the symmetric squares
and rhombs will be parallel to the bulk strain axes,
because of their symmetry. So here the deformation is a
pure shear, di�erent in intensity but parallel in orien-
tation, to the bulk pure shear. This cannot be assumed
for the asymmetric objects in Fig. 9. Although these
skew squares were originally equant objects, they were
asymmetric: so what is the e�ect of their developing
asymmetry on the deformation?

The m � 100 example (Fig. 4b) shows virtually zero
rotation, as would be expected for pure shearing of a
rigid object of this shape (Ghosh and Ramberg, 1976).
What might be expected for an oblique angular object
that deforms, di�erently from the matrix, is less obvious.
The Mohr diagram method provided us with approxi-
mate strain ratios, discussed earlier (Figs. 11b and 12b),
and also allows a fuller analysis of progressive defor-
mation in these models. On- and o�-axis Mohr circles of
this kind can be used to show the di�erences between
co-axial and non-coaxial deformation (Passchier, 1988).
Our data show only small angles o�-axis, from 1 to 48,
for all the examples: insu�cient to distinguish margins

of error from slightly non-coaxial deformation, though
more probably the former.

A more reliable measure of the deformation histories
is to consider orientations of the original object edges
to object principal axes, for the four stages of model
deformation. The original orientation of the lengthen-
ing object edge to the bulk extension is 26.68. From
the Mohr diagram solutions for m � 10, the equivalent
angles are found to be 18218; for m � 5, 19218; and
for m � 0:1, 29218. Importantly, there is no consistent
change through the four deformation stages, which
implies that the principal axes for the object strains are
all material lines, and so their deformations are coax-
ial. Clearly, these angles are di�erent from the edge
orientation of 26.68 quoted above for bulk strain and
passive behaviour, and we interpret this to mean that
the average deformation within the skew square
objects must be a pure shear oblique to the bulk pure
shear. For m � 10 (Fig. 5b), the object extension acts
8.58 anticlockwise of the bulk extension (long axis); for
m � 0:1 (Fig. 7b), it is just 2.58 clockwise.

In summary, the average strain in these skew square
objects has R values within the range reported for rec-
tangular R for `squares' and `rhombs;' but it appears
that they do not deform with axes parallel to the bulk
strain, if there is a viscosity ratio. The sti�er the
object, the more the extension direction is refracted
towards the directions of original object-edges. The
incompetent objects only show a small amount of
refraction of pure shear axes, this time in the sense of
the lengthening object diameter. These are preliminary
and tentative results that will be investigated more
thoroughly in ongoing work, but they appear to share
some of the features of strain refraction already
described for layered systems (Treagus, 1988).

5. Analyses of object shapes and irregularities

The preceding analyses considered ways of quantify-
ing overall object strains, while noting that the `squares'
model series strained heterogeneously into varieties of
barrel, bone or lobate shapes (Fig. 8). It was noted, ear-
lier, that equivalent circular or elliptical objects would
deform homogeneously, even if there were viscosity con-
trasts, with all the necessary heterogeneity of local strain
accommodated in the matrix region around the object:
not in the object itself. It has already been seen that the
orientation of the original non-elliptical shape (in this
case, square) is an important control on the heterogen-
eity of strain, and the resulting shape changes.
Comparing the irregularity of model `squares' (becom-
ing barrels and bones) and model `rhombs' (becoming
near-rhombs) suggests a more general result: that objects
with viscosity contrast will deform most irregularly where
they have straight edges sub-parallel to the shortening

Fig. 15. R-ratio versus m graph: the ratio of Rectangular R and

Inside R for `squares', using data from Fig. 14. The four successive

curves (squares, crosses, asterisks and crossed-squares), respectively,

denote the four stages of bulk deformation (R � 1:78, 4, 9.18, 16).
Note strong variations for m > 1, peaking near 5, compared to indis-

tinct curves for m < 1.
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direction. This is borne out by our models with various
other object shapes.

The present analyses will concentrate on the `square'
models (parallel to strain axes) and their characteristic

shape features. Two approaches to measurement of

shape irregularity of barrel and bone shaped objects will
be presented. One concerns the R-ratio of the two strain

measures (Rectangular R and Inside R ) discussed above
and graphed in Fig. 15. This ®gure showed a maximum

R-ratio for the m � 5 model; a result noted in the earlier

results at 50% bulk shortening (Treagus et al., 1996),
and now con®rmed over four stages of model defor-

mation. (However, m � 5 may not be the exact maxi-

mum.) The second is a more direct measure of concave
and convex shape e�ects, addressed next.

The characteristic shapes compiled in Fig. 8 arise
principally through concaving or convexing of the

shortening object edges, according to the viscosity

contrast. We introduce (Fig. 16) a dimensionless
measure, C: a ratio of the maximum relative displace-

ment of the edge, given by h, and the rectangular

width, b. C is negative for concavity (e.g. ®sh-mouth
ends of barrels), and positive for convexity (e.g.

lobate end of bones).

Fig. 17(a) shows C-factors versus bulk R curves for

the competent model series. This endorses the noted

result that the maximum irregularity occurs for the
m � 5 models. (However, other analyses suggest that

the true value for maximum irregularity may be in the

range of m � 3±4.) The sti�est objects fall close to the
abscissa, which represents a straight edge, and this

occurs also for m � 1. Thus the m values fan upwards

from m � 1±5, and downwards again to m > 100. To
separate these data, Fig. 17(b), shows C versus object

strain (Rectangular R ), and clear trends with slopes re-

lated to m now emerge. The values for m > 10 are
omitted, here, because these data cluster along the m �
10 line, ever closer to the graph origin as m increases.

An equivalent graph of C for incompetent `squares'
versus bulk R (Fig. 17c), shows a consistent variation

from the abscissa (m � 1) to maximum at m � 0:0001.
These data have not been shown additionally as C ver-

sus object strain, but earlier ®gures allow conversion

of Bulk R to the object R values, if required.

All the shape analysis graphs in Fig. 17 show ap-

proximately linear trends of jCj with (R ÿ 1), demon-

strating a progressive steady growth of concavity/
convexity as a factor of bulk and object strain. This

was maintained even in models at the highest bulk
strains, where there might arguably be insu�cient

matrix to surround and accommodate the objects stea-

dily. The consistent linear trends, both for the strain
measurements noted earlier, and the normalized shape

measurements given in Fig. 17, are quite surprising,

and would seem to support the viability of even the
most extremely deformed models. These results o�er

the prospect of using end-concavity/convexity as a new

viscosity-ratio indicator for geological objects of this
kind.

Fig. 16. De®nition of normalised end-shape factor, C, for `squares'.

(a) Negative C measures concavity in a barrel with `®sh mouth'

(m � 10; bulk R � 4). (b) Positive C measures convexity for lobate

incompetent object (m � 0:1; bulk R � 4).

Fig. 17. Relationship of concavity/convexity, jCj, to R values in

`square' objects with di�erent m values (labelled). (a) ÿC versus bulk

R in competent objects; (b) ÿC versus object R (rectangular) in com-

petent objects; (c) C versus bulk R in incompetent objects. Symbols

indicate model data points, and numbers m values.
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6. Implications and conclusions for geological strain
analysis

6.1. Object shapes and geological clasts

The modelling presented in this paper concentrates
on square objects, and how these deform when sur-
rounded by a matrix of di�erent viscosity. To be rel-
evant to rocks, we need to be able to justify many
things: (1) modelling object and matrix as Newtonian
¯uids with di�erent viscosity, to simulate `competence
contrast' in rocks; (2) whether square objects are
appropriate for modelling any kinds of geological
clasts; (3) whether these single-object models can be
applied to rocks that contain closely spaced clasts.

In the Introduction, we raised the question of clast
shape in rocks and referred back to our earlier paper
on this topic (Treagus et al., 1996). We noted that
most traditional methods of strain analysis in rocks
assume that strain markers behave passively (no com-
petence contrast), and/or that the objects began as
spheres or ellipsoids. We speci®cally questioned
whether conglomerates, so commonly used for strain
analysis (e.g. in Rf ±f analysis), have pebbles that are
always ellipsoidal. And if not, what is the e�ect of in-
itial shape on deformation?

A square object might not be any closer to a reason-
able initial `ideal' shape (in two dimensions), than a
circle, for geological clasts. But it provides an alterna-
tive: a route to understanding the deformation of any
angular object, which theory shows will not deform
homogeneously if there is a viscosity contrast. There
are a few kinds of clast that might be originally cubic
or cuboidal: for example, prismatic crystal grains and
feldspar clasts. In contemporaneous work (S.H.T. with
J.E. Treagus), sampling and analysing many examples
of deformed conglomerate, tillite and breccia in
Europe, we have observed clasts with all manner of
shapes: sometimes quite round, that could be reason-
ably approximated as elliptical; commonly angular, tri-
angular to polygonal; sometimes suggestive of original
equancy; but in many cases elongate in a manner that
could be due to an initial prolate or oblate 3D shape,
or due to deformation (or both). These observations
raise one of the most di�cult problems in analyses of
such rocks: how to determine strain if the original object
shape is not known. Rf ±f analyses (see Lisle, 1985) can
avoid this problem by statistical sampling, if it can be
assumed that with su�cient population of varied
clasts, the sum total of all the individual clast shapes
and orientations is `uniform'.

The results in this paper take the opposite approach,
by examining what might be revealed about rheology
from single objects, using squares in di�erent orien-
tations. We have shown that the deformation arises by
two interrelated processes, a�ecting squares in the

three model orientations in distinctly di�erent ways.
One process involves an average object strain, broadly
proportional to viscosity ratio, as for circular objects:
but notably di�erent for the three modelled orien-
tations. `Square' competent objects record more than
`rhombs', largely due to greater strain at their corners,
accentuating the cornered shape. The results for
incompetent square objects show the opposite e�ect:
while the angular shapes persist throughout the defor-
mation of asymmetric and diagonal squares into
skewed parallelograms and rhombs, the extreme het-
erogeneity of deformation for the `square' orientation
causes the angularity to disappear, and the object to
become such a lobate-ended strip that all its original
squareness has disappeared. The problem with such a
shape, if this were a geological clast and its `incompe-
tence' and internal strain were not evident, is that it
could appear to be a passively deformed round object.

6.2. Object and clast strain histories

The object strain measurements for our models
reveal a special kind of steadiness of deformation, for
all three square orientations, seen also for circular
objects in theory and modelling. We found all the
paths of (Rÿ 1) of object versus bulk strain (including
two di�erent measures for the irregular `squares'), to
be approximately linear, given by the expression:

�RO ÿ 1� � q�RB ÿ 1�,

where the gradient, q, is related to viscosity ratio,
object shape and (if non-circular) orientation. This is a
surprising result for ®nite strain relationships, with no
obvious genetic explanation, but one that has potential
for applying to geological objects of many shapes.

This empirical ®nite strain relationship between
object and matrix may be masking what is happening
incrementally. The non-linear relationships of log-R
for object and matrix suggest an incremental strain his-
tory of increasingly passive behaviour with increasing
strain. This may arise in the ®nite element models
partly as a result of model design and boundary con-
ditions, and their e�ects on object±matrix spacing: but
this is probably not the main reason, as similar trends
are seen in other models with di�erent spacing, and in
theory of circular objects which assume an in®nite
matrix. It would seem that the developing strain and
inequancy of objects serve to reduce incremental com-
petence contrasts, and it may be possible to de®ne an
object axial ratio, such as 5 or 10, that is an e�ective
threshold value for passive behaviour (applicable only
to long objects aligned parallel to the bulk extension).
This would require fuller testing in further model and
®eld-based analyses. The tentative conclusions for geo-
logical strain analysis of fragmental rocks, are (a) that
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originally elongate clasts will deform more than equant
clasts of the same lithology (whether round or angu-
lar); and (b) that the greater the bulk deformation, the
more the whole rock may approach an appearance of
homogeneous deformation.

A signi®cant ®nding from the strain analyses of the
`skew squares' is that the object strains are oblique to
the bulk strain: refracted measurably anticlockwise
(with respect to the models in Fig. 9) towards the object
edges in the sti� competent objects, refracted very
slightly clockwise in the incompetent. This has impli-
cations for strain analysis, as it means that cleavage fab-
rics in angular clasts might not be parallel to cleavage in
the matrix. However, the result is not surprising, as
strain and cleavage refraction are recognised features of
deformed contrastingly layered systems (Treagus, 1983,
1988). Initially slab or rod-shaped geological clasts
might be expected to exhibit strain refraction similar to
those modelled for layers (see also Treagus and
Sokoutis, 1992). Nevertheless, we had not anticipated
refraction into initially square but obliquely oriented
objects, so this result suggests that angularity and asym-
metry in orientation to bulk strain axes are su�cient to
generate oblique strains, even in equant objects. This
tentative conclusion will be investigated further through
other models and ongoing ®eld studies.

6.3. Shear criteria

A further feature of the asymmetric square objects is
that the variably skewed shapes might appear rather
like `shear criteria', and might be misdiagnosed as fea-
tures related to simple shear. Yet these were all pro-
duced in pure shear. In some preliminary ®nite
element modelling of equivalent square objects in bulk
simple shear deformation, we produced surprisingly
similar results to those shown here. Geologists often
use the theoretical behaviour of rigid objects of di�er-
ent shapes as a means of distinguishing the e�ects of
pure and simple shear (or more generally, to indicate
the vorticity) (Ghosh and Ramberg, 1976). Our pre-
liminary results for deformable objects suggest that the
di�erences at moderate strains might only be slight,
but this will be pursued in further work.

6.4. Clast shape changes

Our FE model results reveal the potential for using
clast shape changes as an indicator of competence con-
trast, and a possible way of measuring viscosity ratio
in rocks. Ideally `round' objects and pebbles will
deform regularly and homogeneously into ellipses,
whose strain is related to viscosity ratio; but angular
objects provide an additional measure of this from
their shape changes. From studies of a range of angu-
lar shapes not reported here, we consider a straight

edge initially sub-parallel to bulk shortening to be the
best indicator. We de®ne a dimensionless measure of
concavity/convexity (C ) which appears from the
`square' models to have a linear relationship to (Rÿ 1)
for a speci®c viscosity ratio.

These results are being used in current work (with
J.E. Treagus), in analysing clast shapes in fragmental
rocks: to see whether competence contrasts can be
assessed in this way; and whether the method can be
used to help quantify geological strains. From prelimi-
nary studies, we ®nd a better potential for shape stu-
dies lies in the concavity of competent clasts and
boudins, than in lobing of incompetent clasts, for the
following reasons. (1) There are generally more quartz-
ose or granitic clasts in conglomerates, breccias and
tillites, which are clearly competent, than demonstrably
incompetent clasts. (See later.) (2) There will be uncer-
tainty about original clast shape for any lithology, but
the extreme elongation and smoothing of incompetent
objects makes it unlikely that any original straight
edge parallel to shortening could be identi®ed.
Measures of concavity are thus being investigated in
deformed conglomerates and breccias. While the
extreme barrel shapes shown in Fig. 8 appear rare in
the clastic rocks under study, there are many examples
of slightly concave- and convex-sided fragments,
including `shield' shapes of triangular clasts, that are
expected to yield information on the e�ective viscosity
ratios among di�erent rock types and their matrices.

6.5. Competence, incompetence and viscosity ratios in
rocks

The results from these models and theory of object±
matrix systems have relevance to the meaning of compe-
tent and incompetent behaviour of rocks in more gen-
eral terms. We noted that the greatest shape irregularity
for competent objects occurs for viscosity ratios in the
order of 5; and that at higher ratios (> 20), objects
behave more nearly rigidly. For layered systems
(Treagus, 1983, 1988), viscosity ratios of 10 can give rise
to signi®cant changes in strain. In a newly proposed
method for quantifying viscosity ratios in rocks from
cleavage refraction angles (Treagus, 1999), it is
suggested that the features of cleavage refraction attrib-
uted to competence contrasts could arise from very
small viscosity ratios of 2±6. The present object±matrix
modelling independently suggests that clasts that mea-
surably deform must also be those that have quite small
viscosity ratios, such as 2 and 5. Objects with viscosity
ratios to matrix of > 10 will probably have behaved too
rigidly to record measurable strain or fabric.

Incompetence would appear to be far more insensi-
tive and di�cult to quantify in rocks, despite its some-
times dramatic e�ects (Talbot and Sokoutis, 1992).
Theory and modelling for object±matrix systems show
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that even the most incompetent circular clast (m � 0)
will record (Rÿ 1) only 2.6-times the bulk value; and
square clasts by 1.3 times. So geological clasts with a
lower e�ective viscosity than surrounding matrix may
appear to have deformed almost as passive objects.
However, it then becomes di�cult to assess whether an
object is truly `incompetent', or simply behaved rheo-
logically in the same way as the matrix (i.e. no compe-
tence contrast). These are questions of importance in
how deformation is partitioned among various rock
types, whether in clast±matrix systems, in layers, or
around folds, and might invite further discussion and
research.
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